Weak and Measure-Valued Solutions of the Incompressible Euler Equations

Emil Wiedemann

(joint work with László Székelyhidi Jr.)

October 14, 2011 at Carnegie Mellon University

Universität Leipzig, Germany

Incompressible Euler Equations

The Cauchy problem for the incompressible Euler equations of inviscid fluid motion in d dimensions ($d \ge 2$) reads

$$\partial_t v + \operatorname{div}(v \otimes v) + \nabla p = 0$$

 $\operatorname{div} v = 0$
 $v(\cdot, 0) = v_0$

where the velocity v and the scalar pressure p are sought for and v_0 is a given initial velocity field with div $v_0 = 0$.

Subsolutions

Following the framework of C. De Lellis and L. Székelyhidi, observe that the Euler equations are equivalent to

$$\partial_t v + \operatorname{div} u + \nabla q = 0$$

 $\operatorname{div} v = 0$
(1)

and $u = v \otimes v - \frac{1}{d} |v|^2 \mathbb{I}_d$, $q = p + \frac{1}{d} |v|^2$ a.e. For a vector v and a traceless symmetric matrix u one defines the generalized energy

$$e(v, u) = rac{d}{2} \lambda_{max}(v \otimes v - u).$$

A solution (v, u, q) of (1) is called a subsolution w.r.t initial data $v_0(x)$ and an energy density $\overline{e}(x, t)$ if

$$v(\cdot,0)=v_0, \ e(v,u)<\bar{e}.$$

Subsolutions

Following the framework of C. De Lellis and L. Székelyhidi, observe that the Euler equations are equivalent to

$$\partial_t v + \operatorname{div} u + \nabla q = 0$$

 $\operatorname{div} v = 0$ (1)

and $u = v \otimes v - \frac{1}{d} |v|^2 \mathbb{I}_d$, $q = p + \frac{1}{d} |v|^2$ a.e. For a vector v and a traceless symmetric matrix u one defines the generalized energy

$$e(v,u)=rac{d}{2}\lambda_{max}(v\otimes v-u).$$

A solution (v, u, q) of (1) is called a subsolution w.r.t initial data $v_0(x)$ and an energy density $\overline{e}(x, t)$ if

$$v(\cdot,0)=v_0, \ e(v,u)<\bar{e}.$$

From Subsolutions to Exact Solutions

Theorem (De Lellis-Székelyhidi '10)

Let $v_0 \in L^2(\mathbb{R}^d)$ be divergence-free and

 $ar{e}\in C(\mathbb{R}^d imes(0,\infty))\cap C([0,\infty);L^1(\mathbb{R}^d)).$

Suppose further that $(v, u, q) \in C^{\infty}(\mathbb{R}^d \times (0, \infty))$ is a subsolution w.r.t. v_0 and \overline{e} , and that $v \in C([0, \infty); L^2_w(\mathbb{R}^d))$. Then, there exist infinitely many weak solutions for Euler in $C([0, \infty); L^2_w(\mathbb{R}^d))$ with initial data v_0 and energy density \overline{e} .

Remark. The Theorem also holds in the case of periodic boundary conditions.

Global Existence of Weak Solutions

We now assume periodic boundary conditions.

Theorem (E. W. '11)

Let $v_0 \in L^2_{per}(\mathbb{R}^d)$ be divergence-free. Then there exist infinitely many global weak solutions in $C([0,\infty); L^2_w(\mathbb{R}^d))$ with initial data v_0 and bounded kinetic energy.

Remarks.

- This is the first global existence result for weak solutions of Euler.
- Although the energy of these solutions is bounded, it can not be chosen to be non-increasing. In fact, there will be a jump in the energy at time 0.

Sketch of Proof

Owing to De Lellis' and Székelyhidi's result, it suffices to construct subsolutions w.r.t. v_0 and some energy density yet to be chosen. To this end, consider the fractional heat equation

$$\partial_t v + (-\Delta)^{1/2} v = 0$$

div $v = 0$,

which can easily be solved by Fourier transform. Since $(-\Delta)^{1/2} = -\operatorname{div} \mathcal{R}$ (where \mathcal{R} denotes the Riesz transform), we see that $(v, -\mathcal{R}v, 0)$ is a subsolution. One can then choose \overline{e} such that this subsolution has all the desired properties.

- $\nu_{x,t} \in \mathcal{P}(\mathbb{R}^d)$ for a.e. $(x,t) \in \mathbb{R}^d \times \mathbb{R}^+$ (oscillation measure)
- $\lambda \in \mathcal{M}^+(\mathbb{R}^d imes \mathbb{R}^+)$ (concentration measure)
- $\nu_{x,t}^{\infty} \in \mathcal{P}(S^{d-1})$ for λ -a.e. $(x, t) \in \mathbb{R}^d \times \mathbb{R}^+$ (concentration-angle measure)

- $\nu_{x,t} \in \mathcal{P}(\mathbb{R}^d)$ for a.e. $(x,t) \in \mathbb{R}^d \times \mathbb{R}^+$ (oscillation measure)
- $\lambda \in \mathcal{M}^+(\mathbb{R}^d \times \mathbb{R}^+)$ (concentration measure)
- $\nu_{x,t}^{\infty} \in \mathcal{P}(S^{d-1})$ for λ -a.e. $(x, t) \in \mathbb{R}^d \times \mathbb{R}^+$ (concentration-angle measure)

- $u_{x,t} \in \mathcal{P}(\mathbb{R}^d)$ for a.e. $(x,t) \in \mathbb{R}^d \times \mathbb{R}^+$ (oscillation measure)
- $\lambda \in \mathcal{M}^+(\mathbb{R}^d \times \mathbb{R}^+)$ (concentration measure)
- $\nu_{x,t}^{\infty} \in \mathcal{P}(S^{d-1})$ for λ -a.e. $(x, t) \in \mathbb{R}^d \times \mathbb{R}^+$ (concentration-angle measure)

- $u_{x,t} \in \mathcal{P}(\mathbb{R}^d)$ for a.e. $(x,t) \in \mathbb{R}^d \times \mathbb{R}^+$ (oscillation measure)
- $\lambda \in \mathcal{M}^+(\mathbb{R}^d imes \mathbb{R}^+)$ (concentration measure)
- $\nu_{x,t}^{\infty} \in \mathcal{P}(S^{d-1})$ for λ -a.e. $(x, t) \in \mathbb{R}^d \times \mathbb{R}^+$ (concentration-angle measure)

Compactness

Fundamental Theorem of Young Measures (DiPerna-Majda '87, Alibert-Bouchitté '97)

If (v_n) is a bounded sequence in $L^2(\mathbb{R}^d \times \mathbb{R}^+; \mathbb{R}^d)$, then there exists a subsequence which generates some Young measure $(\nu_{x,t}, \lambda, \nu_{x,t}^{\infty})$, i.e.

$$f(v_n)dxdt \stackrel{*}{\rightharpoonup} \left(\int_{\mathbb{R}^d} f(z)d\nu_{x,t}(z)\right)dxdt + \left(\int_{S^{d-1}} f^{\infty}(\zeta)d\nu_{x,t}^{\infty}(\zeta)\right)\lambda$$

for every continuous $f : \mathbb{R}^d \to \mathbb{R}$ for which the L²-recession function

$$f^{\infty}(\zeta) = \lim_{s \to \infty} \frac{f(s\zeta)}{s^2}$$

exists and is continuous on S^{d-1} .

Measure-Valued Solutions for Euler

Definition

A Young measure $(\nu_{x,t}, \lambda, \nu_{x,t}^{\infty})$ is called a *measure-valued solution (mvs)* of the Euler equations if

$$\partial_t \langle \nu_{x,t}, z
angle + \operatorname{div} \left(\langle \nu_{x,t}, z \otimes z
angle + \langle \nu_{x,t}^{\infty}, \zeta \otimes \zeta
angle \lambda
ight) +
abla p(x,t) = 0$$

 $\operatorname{div} \langle \nu_{x,t}, z
angle = 0$

in the sense of distributions.

It is possible to define a notion of initial data and of kinetic energy for a mvs. We omit details. If E(t) is the energy of a mvs with initial data v_0 , and if

$$E(t) \leq \frac{1}{2} \int_{\mathbb{R}^d} |v_0|^2 dx$$

for a.e. t > 0, then we call the mvs admissible.

Definition

A Young measure $(\nu_{x,t}, \lambda, \nu_{x,t}^{\infty})$ is called a *measure-valued solution (mvs)* of the Euler equations if

$$\partial_t \langle \nu_{x,t}, z
angle + \operatorname{div} \left(\langle \nu_{x,t}, z \otimes z
angle + \langle \nu_{x,t}^{\infty}, \zeta \otimes \zeta
angle \lambda
ight) +
abla p(x,t) = 0$$

 $\operatorname{div} \langle \nu_{x,t}, z
angle = 0$

in the sense of distributions.

It is possible to define a notion of initial data and of kinetic energy for a mvs. We omit details. If E(t) is the energy of a mvs with initial data v_0 , and if

$$E(t) \leq \frac{1}{2} \int_{\mathbb{R}^d} |v_0|^2 dx$$

for a.e. t > 0, then we call the mvs admissible.

The Main Result

It is easy to see that a sequence of admissible weak solutions of Euler generates an admissible mvs. Is the converse also true?

Theorem (L. Székelyhidi - E. W. '11)

Let $(\nu_{x,t}, \lambda, \nu_{x,t}^{\infty})$ be an admissible mvs with initial data v_0 . Then there exists a sequence (v_n) of weak solutions that generates $(\nu, \lambda, \nu^{\infty})$ as a Young measure. In addition,

$$\|v_n(t=0)-v_0\|_{L^2(\mathbb{R}^d)} < \frac{1}{n}$$

and

$$\sup_{t\geq 0}\frac{1}{2}\int_{\mathbb{R}^d} |v_n(x,t)|^2 dx \leq \frac{1}{2}\int_{\mathbb{R}^d} |v_n(x,0)|^2 dx.$$

- A priori, mvs seem to be a much weaker concept than weak solutions. The Theorem shows however that they are in a sense the same.
- DiPerna and Majda constructed explicit examples for the development of oscillations and concentrations in sequences of weak solutions. The Theorem shows that in fact *any* conceivable oscillation/concentration behavior can be realized by a sequence of weak solutions.
- The result gives an example of a characterization of Young measures generated by constrained sequences where the constant rank property does not hold.
- As a corollary, we obtain the following existence result:

- A priori, mvs seem to be a much weaker concept than weak solutions. The Theorem shows however that they are in a sense the same.
- DiPerna and Majda constructed explicit examples for the development of oscillations and concentrations in sequences of weak solutions. The Theorem shows that in fact *any* conceivable oscillation/concentration behavior can be realized by a sequence of weak solutions.
- The result gives an example of a characterization of Young measures generated by constrained sequences where the constant rank property does not hold.
- As a corollary, we obtain the following existence result:

- A priori, mvs seem to be a much weaker concept than weak solutions. The Theorem shows however that they are in a sense the same.
- DiPerna and Majda constructed explicit examples for the development of oscillations and concentrations in sequences of weak solutions. The Theorem shows that in fact *any* conceivable oscillation/concentration behavior can be realized by a sequence of weak solutions.
- The result gives an example of a characterization of Young measures generated by constrained sequences where the constant rank property does not hold.
- As a corollary, we obtain the following existence result:

- A priori, mvs seem to be a much weaker concept than weak solutions. The Theorem shows however that they are in a sense the same.
- DiPerna and Majda constructed explicit examples for the development of oscillations and concentrations in sequences of weak solutions. The Theorem shows that in fact *any* conceivable oscillation/concentration behavior can be realized by a sequence of weak solutions.
- The result gives an example of a characterization of Young measures generated by constrained sequences where the constant rank property does not hold.
- As a corollary, we obtain the following existence result:

An Existence Assertion

Corollary

Let $H = \{v \in L^2(\mathbb{R}^d) : \text{div } v = 0\}$. There exists a dense subset $\mathcal{E} \in H$ such that for all $v_0 \in \mathcal{E}$ there exists a weak solution with initial data v_0 such that

$$\sup_{t\geq 0}\frac{1}{2}\int_{\mathbb{R}^d}|v(x,t)|^2dx\leq \frac{1}{2}\int_{\mathbb{R}^d}|v_0(x)|^2dx.$$